
Abstract

Due to the many possible interactions with an ever
changing environment, combined with stringent require-
ments regarding temporal behaviour, robustness, availa-
bility, and maintainability, large-scale embedded systems
are very complex in their design. Coordination models
offer the potential of separating functional requirements
from other aspects of system design. In this paper we
present a software architecture for large-scale embedded
systems that incorporates an explicit coordination model.
Conceptually the coordination model consists of applica-
tion processes that interact through a shared data space -
no direct interaction between processes is possible. Start-
ing from this relatively simple model we derive successive
refinements of the model to meet the requirements that are
typical for large-scale embedded systems.

The software architecture has been applied in the
development of commercially available command-and-
control and traffic management systems. Experience
shows that due to the very high degree of modularity and
the maximal independence between modules, these sys-
tems are relatively easy to develop and integrate in an
incremental way. Moreover, distribution of processes and
data, fault-tolerant behaviour, graceful degradation, and
dynamic reconfiguration are directly supported by the
architecture.

1. Introduction

Due to the many possible interactions with an ever
changing environment, combined with stringent require-
ments regarding temporal behaviour, robustness, availabil-
ity, and maintainability, large-scale embedded systems,
like traffic management, process control, and command-
and-control systems, are very complex in their design. The
tasks performed by these systems typically include: (1)
processing of measurements obtained from the environ-

ment through sensing devices, (2) determination of model
parameters describing the environment, (3) tracking dis-
crepancies between desired state and perceived state, (4)
taking corrective action, and (5) informing the operator or
team of operators about the current and predicted state of
affairs. All tasks are very closely related and intertwined,
and particularly in large-scale systems, there is a huge
number of model parameters, which are often intricately
linked through numerous dependencies. It is therefore a
very natural approach to design the software for such sys-
tems as a monolithic entity, in which all relevant informa-
tion (deductive knowledge and actual data) is readily
accessible for all the above mentioned parts.

There is, however, a strong and well-known reason to
proceed differently: a software system thus conceived is
very difficult to implement, and even more difficult to
modify should the purpose of the system be changed, or
the description of the environment be refined. Adopting a
modular approach to design, the various functions imple-
mented in software are separated into different modules
that have some independence from each other. Such an
approach - well established today as standard software
engineering practice - leads to better designs, and reduces
development time and the likelihood of errors.

Unfortunately, with today’s highly sophisticated sys-
tems, this is still not good enough. In addition to the func-
tional requirements of these systems, many non-functional
requirements, such as a high degree of availability and
robustness, distribution of the processing over a possibly
wide variety of different host processors, and (on-line)
adaptability and extendibility, place constraints on the
design freedom that can hardly be met with current design
approaches. A methodology for the design of large-scale
distributed embedded systems should provide (a basis for)
an integral solution for the various types of requirements.
Traditional design methods based on functional decompo-
sition are not adequate. The sound principle of modularity
needs therefore to be further exploited to cover non-func-

Maarten Boasson
Quaerendo Invenietis bv

Universiteit van Amsterdam
The Netherlands

maarten@quaerendo.com

RTO-MP-IST-064 2.1 - 1

2.1 – Architectural Support for Integration
in Distributed Reactive Systems

MAILTO:maarten@quaerendo.com

tional requirements as well.
Recently coordination models and languages have

become an active area of research [6]. In [7] it was argued
that a complete programming model consists of two sepa-
rate components: the computation model and the coordi-
nation model. The computation model is used to express
the basic tasks to be performed by a system, i.e. the sys-
tem’s functionality. The coordination model is applied to
organize the functions into a coherent ensemble; it pro-
vides the means to create processes and facilitates commu-
nication. One of the greater merits of separating
computation from coordination is the considerably
improved modularity of a system. The computation model
facilitates a traditional functional decomposition of the
system, while the coordination model accomplishes a fur-
ther decoupling between the functional modules in both
space and time. This is exemplified by the relative success
of coordination languages in the field of distributed and
parallel systems.

Since the early 80’s we have developed and refined a
software architecture for large-scale distributed embedded
systems [2], that is based on a separation between compu-
tation and coordination. Below, we first present the basic
software architecture, after which we shall focus on the
underlying coordination model. We demonstrate how the
basic coordination model can be gradually refined to
include non-functional aspects, such as distributed
processing and fault-tolerance, in a modular fashion. The
software architecture has been applied in the development
of commercially available command-and-control, and traf-
fic management systems. We conclude with a discussion
of our experiences in the design of these systems.

2. Software architecture

A software architecture defines the organisational prin-
ciple of a system in terms of types of components and pos-
sible interconnections between these components. In
addition, an architecture prescribes a set of design rules
and constraints governing the behaviour of components
and their interaction [4]. Traditionally, software architec-
tures have been primarily concerned with structural organ-
isation and static interfaces. With the growing interest in
coordination models, however, more emphasis is placed
on the organizational aspects of behaviour and interaction.

In practice, many different software architectures are in
use. Some well-known examples are the Client/Server and
Blackboard architectures. Clearly, these architectures are
based on different types of components - clients and serv-
ers versus knowledge sources and blackboards - and use
different styles of interaction - requests from clients to
servers versus writing and reading on a common black-

board.
The software architecture, named SPLICE, that we

developed for distributed embedded systems basically
consists of two types of components: applications and a
shared data space. Applications are active, concurrently
executing processes that each implement part of the sys-
tem’s overall functionality. Besides process creation, there
is no direct interaction between applications; all communi-
cation takes place through a logically shared data space
simply by reading and writing data elements. In this sense
SPLICE bears strong resemblance to coordination lan-
guages and models like Linda [5], Gamma [1], and Swarm
[9], where active entities are coordinated by means of a
shared data space.

2.1. The shared data space

The shared data space in SPLICE is organized after the
well-known relational data model. Each data element in
the shared data space is associated with a unique sort, that
defines its structure. A sort definition declares the name of
the sort and the record fields the sort consists of. Each
record field has a type, such as integer, real, or string; vari-
ous type constructors, such as enumerated types, arrays,
and nested records, are provided to build more complex
types.

Sorts enable applications to distinguish between differ-
ent kinds of information. A further differentiation between
data elements of the same sort is made by introducing
identities. As is standard in the relational data model, one
or more record fields can be declared as key fields. Each
data element in the shared data space is uniquely deter-
mined by its sort and the value of its key fields. In this way
applications can unambiguously refer to specific data ele-
ments, and relationships between data elements can be
explicitly represented by referring from one data element
to the key fields of another.

To illustrate, we consider a simplified example taken
from the domain of air traffic control. Typically a system
in this domain would be concerned with various aspects
about flights, such as flight plans and the progress of
flights as tracked from the reports that are received from
the system’s surveillance radar. Hence, we define sorts
flightplan, report, and track as indicated in Figure 1.

Sort flightplan declares four fields: a flight number, e.g.
KL332 or AF1257, the scheduled time for departure and
arrival, and the type of aircraft that carries out the flight,
e.g. a Boeing 737 or an Airbus A320. By declaring the
flight number as a key field, it is assumed that each flight
plan is uniquely determined by its flight number.

Sort report contains the measurement vector of an
object as returned at a specific time by the system’s sur-
veillance radar. The measurement vector typically con-

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 2 RTO-MP-IST-064

tains position information. A unique index is attached to
be able to distinguish between different reports.

Through a correlation and identification process, the
progress of individual flights is recorded in sort track. The
state vector typically contains position and velocity infor-
mation on the associated flight number, that is computed
from consecutive measurements. The timestamp identifies
the time at which the state vector has been last updated.

2.2. Applications

Basically, applications interact with the shared data
space by writing and reading data elements. SPLICE does
not provide an operation for globally deleting elements
from the shared data space. Instead, data can be removed
implicitly using an overwriting mechanism. This mecha-
nism is typically used to update old data with more recent
values as the system’s environment evolves over time.
Additionally, applications can hide data, once read, from
their view. This operation enables applications to progres-
sively traverse the shared dataspace by successive read
operations. By the absence of a global delete operation,
the shared dataspace in SPLICE models a dynamically
changing information store, where data can only be read or
written. This contrasts the view where data elements rep-
resent shared resources, that can be physically consumed
by applications.

SPLICE extends an existing (sequential) programming
language with coordination primitives for creating proc-
esses and for interacting with the shared dataspace. More

formally, the primitives are defined as follows.

• create(f): creates a new application process from the
executable file named f, and run it in parallel to the
existing applications.

• write (α, x): inserts an element x of sort α into the shared
data space. If an element of sort α with the same key
value as x already exists in the shared dataspace, then
the existing element is replaced by x.

• read(α, q, t): reads an element of sort α from the shared
dataspace, satisfying query q. The query is formulated
as a predicate over the record fields of sort α. In case a
matching element does not exist, the operation blocks
until either one becomes available or until the timeout t
has expired. If the latter occurs, a timeout error is
returned by the operation. The timeout is an optional
argument: if absent the read operation simply blocks
until a matching element becomes available. In case
more than one matching element can be found, one is
selected non-determinstically.

• get(α, q, t): operates identically to the read operation,
except that the element returned from the shared
dataspace becomes hidden from the application’s view,
that is, the same element cannot be read a second time
by the application.

The overwriting mechanism that is used when inserting
data elements into the shared dataspace potentially gives
rise to conflicts. If at the same time two different applica-
tions each write a data element of the same sort and with
the same key value, one element will overwrite the other in
a nondeterministic order. Consequently one of the two
updates will be lost. In SPLICE this type of nondetermin-
istic behaviour is considered undesirable. The architecture
therefore imposes the design constraint that for each sort
at most one application shall write data elements with the
same key value.

As an illustration we return to the air traffic control
example from the previous section. Consider an applica-
tion process that tracks the progress of flight number n.
This application continuously reads new reports from the
surveillance radar and updates the track data of flight
number n accordingly. The application process can be
defined as indicated by the code fragment in Figure 2.

The application first reads the initial track data for
flight number n from the shared dataspace. The initial data
is produced by a separate application that is responsible
for track initiation. The application then enters a loop
where it first reads a new report r from the shared
dataspace. If the report correlates with the current track t,

sort flightplan
key flightnumber : string
departure : time
arrival : time
aircraft : string

sort track
key flightnumber : string
timestamp : time
state : vector

sort report
key index : integer
measurement : vector
timestamp : time

Figure 1. Sort definitions: an example.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

RTO-MP-IST-064 2.1 - 3

as expressed by the condition correlates(r, t), then track t
is updated by the newly received report, using the proce-
dure update(t, r). The updated track is inserted into the
shared dataspace, replacing the previous track data of
flight number n. This process is repeated until track t is
terminated. Termination can be decided, for instance, if a
track did not receive an update over a certain period of
time.

3. Refinements of the architecture

The shared dataspace architecture is based on an ideal
situation where many non-functional requirements, such
as distribution of data and processing across a computer
network, fault-tolerance, and system response times, need
not be taken into account. We next discuss how, through a
successive series of modular refinements, a software archi-
tecture can be derived that fully supports the development
of large-scale, distributed embedded systems.

3.1. A distributed software architecture

The first aspect that we consider here is distribution of
the shared data space over a network of computer systems.
The basic architecture is refined by introducing two addi-
tional components. As illustrated in Figure 3, the addi-
tional components consist of heralds and a communication
network.

Each application process interacts with exactly one her-
ald. A herald embodies a local database for storing data
elements, and processing facilities for handling all com-
munication needs of the application processes. All heralds
are identical and need no prior information about either
the application processes or their communication require-
ments. Communication between heralds is established by
a message passing mechanism. Messages between heralds
are handled by the communication network that intercon-
nects them. The network must support broadcasting, but
should preferably also support direct addressing of her-

alds, and multicasting. An application process interacts
with its assigned herald by means of the interaction primi-
tives from section 2.2. The interaction with heralds is
transparent with respect to the shared dataspace model:
application processes continue to operate on a logically
shared dataspace.

The heralds are passive servers of the application proc-
esses, but are actively involved in establishing and main-
taining the required inter-herald communication. The
communication needs are derived dynamically by the col-
lection of heralds from the read and write operations that
are issued by the application processes. The protocol that
is used by the heralds to manage communication is based
on a subscription paradigm that can be briefly outlined as
follows.

First consider an application that performs a write oper-
ation. The data element is transferred to the application’s
herald, which initially stores the element into its local
database, overwriting any existing element of the same
sort and with the same key value.

Next consider an application that issues a read request
for a given sort. Upon receipt of this request, the applica-
tion’s herald first checks whether this is the first request
for that particular sort. If it is, the herald broadcasts the
name of the sort on the network.

All other heralds, after receiving this message, register
the herald that performed the broadcast as a subscriber to
the sort carried by the message. Next each herald verifies
if its local database contains any data elements of the
requested sort, previously written by its application proc-
ess, in which case copies of these elements are transferred
to the newly subscribed herald. After this initial transfer,
any subsequently written data of the requested sort will be
immediately forwarded to all subscribed heralds.

Each subscribed herald stores both the initially and all
subsequently transferred copies into its local database,

t := get(track, flightnumber = n);
repeat

r := get(report, true);
if correlates(r, t) then
update(t, r);
write (track, t);

end if
until terminated(t);

Figure 2. Coordination primitives: an example.

communication network

herald herald herald herald

Application processes

SHARED DATA SPACE

P0 P1 Pn•••

Figure 3. A distributed software architecture.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 4 RTO-MP-IST-064

overwriting any existing data of the same sort and with the
same key value. During all transfers a protocol is used that
preserves the order in which data elements of the same
sort have been written by an application. This mechanism
in combination with the architecture’s design constraint
that for each sort at most one application writes data ele-
ments with the same key value, guarantees that overwrites
occur in the same order with all heralds. Otherwise, com-
munication by the heralds is performed asynchronously.

The search for data elements matching the query of a
read request is performed locally by each herald. If no
matching element can be found, the operation is sus-
pended either until new data of the requested sort arrives
or until the specified timeout has expired.

Execution of a get operation is handled by the heralds
similarly to the read operation, except that the returned
data element is removed from the herald’s local database.

As a result of this protocol, the shared dataspace is
selectively replicated across the heralds in the network.
The local database of each herald contains data of only
those sorts that are actually read or written by the applica-
tion it serves. In practice the approach is viable, particu-
larly for large-scale distributed systems, since the
applications are generally interested in only a fraction of
all sorts. Moreover, the communication pattern in which
heralds exchange data is relatively static: it may change
when the operational mode of a system changes, or in a
number of circumstances in which the configuration of the
system changes (such as extensions or failure recovery).
Such changes to the pattern are very rare with respect to
the number of actual communications using an established
pattern. It is therefore beneficial from a performance point
of view to maintain a subscription registration. After an
initial short phase each time a new sort has been intro-
duced, the heralds will have adapted to the new communi-
cation requirement. This knowledge is subsequently used
by the heralds to distribute newly produced data to all the
heralds that hold a subscription. Since subscription regis-
tration is maintained dynamically by the heralds, all
changes to the system configuration will automatically
lead to adaptation of the communication patterns.

Note that there is no need to group the distribution of a
data element to the collection of subscribed heralds into an
atomic transaction. This enables a very efficient imple-
mentation in which the produced data is distributed asyn-
chronously and the latency between actual production and
use of the data depends largely on the consuming applica-
tion processes. This results in upper bounds that are
acceptable for distributed embedded systems where timing
requirements are of the order of milliseconds.

3.2. Temporal aspects

The shared dataspace as introduced in section 2, mod-
els a persistent store: data once written remains available
to all applications until it is either overwritten by a new
instance or hidden from an application’s view by execu-
tion of a get operation. The persistence of data decouples
applications in time. Data can be read, for instance, by an
application that did not exist the moment the data was
written, and conversely, the application that originally
wrote the data might no longer be present when the data is
actually read.

Applications in the embedded systems domain deal
mostly with data instances that represent continuous quan-
tities: data is either an observation sampled from the sys-
tem’s environment, or derived from such samples through
a process of data association and correlation. The data
itself is relatively simple in structure; there are only a few
data types, and given the volatile nature of the samples,
only recent values are of interest. However, samples may
enter the system at very short intervals, so sufficient
throughput and low latency are crucial properties. In addi-
tion, but to a lesser extent, embedded systems maintain
discrete information, which is either directly related to
external events or derived through qualitative reasoning
from the sampled input.

This observation leads us to refine the shared dataspace
to support volatile as well as persistent data. The sort defi-
nition, which basic format was introduced in section 2.1, is
extended with an additional attribute that indicates
whether the instances of a sort are volatile or persistent.
For persistent data the semantics of the read and write
operations remain unchanged. Volatile data, on the other
hand, will only be visible to the collection of applications
that is present at the moment the data is written. Any
application that is created afterwards, will not be able to
read this data.

Returning to the air traffic control example from
Figure 1, the sort report can be classified as volatile,
whereas the sorts track and flightplan are persistent. Con-
sequently, the tracking process, as specified in Figure 2,
does not receive any reports from the surveillance radar
that were generated prior to its creation. After the tracking
process has been created, it first gets the initial track data
and then waits until the next report becomes available.

Since the initial track data is produced exactly once, the
tracking process must be guaranteed to have access to it,
otherwise the process might block indefinitely. This
implies that the sort track must be persistent.

The subscription-based protocol, that manages the dis-
tribution of data in a network of computer systems, can be
refined to exploit the distinction between volatile and per-
sistent data. Since volatile data is only available to the

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

RTO-MP-IST-064 2.1 - 5

applications that are present at the moment the data is
written, no history needs to be kept. Consequently, if an
application writes a data element, it is immediately for-
warded to the subscribed heralds, without storing a copy in
the application’s local database. This optimization reduces
the amount of storage that is required. Moreover, it elimi-
nates the initial transfer of any previously written data ele-
ments, when an application performs the first read
operation on a sort. This enables a newly created applica-
tion to integrate into the communication pattern without
initial delay, which better suits the timing characteristics
that are typically associated with the processing of volatile
data.

3.3. Fault-tolerance

Due to the stringent requirements on availability and
safety that are typical of large-scale embedded systems,
there is the need for redundancy in order to mask hardware
failures during operation. Fault-tolerance in general is a
very complex requirement to meet and can, of course, only
be partially solved in software. In SPLICE, the heralds can
be refined to provide a mechanism for fault-tolerant
behaviour. The mechanism is based on both data and proc-
ess replication. By making fault-tolerance a property of
the software architecture, the design complexity of appli-
cations can be significantly reduced.

In this paper we only consider failing processing units,
and we assume that if a processor fails, it stops executing.
In particular we assume here that communication never
fails indefinitely and that data does not get corrupted.

If a processing unit in the network fails, the data that is
stored in this unit, will be permanently lost. The solution is
to store copies of each data element across different units
of failure. The subscription-based protocol described in
section 3.1 already implements a replicated storage
scheme, where copies of each data element are stored with
the producer and each of the consumers. The basic proto-
col, however, is not sufficient to implement fault-tolerant
data storage in general. For instance, if data elements of a
specific sort have been written but not (yet) read, the ele-
ments are stored with the producer only. A similar prob-
lem occurs if the producers and consumers of a sort
happen to be located on the same processing unit.

The solution is to store a copy of each data element in
at least one other unit of failure. The architecture as
depicted in Figure 3 is extended with an additional type of
component: a persistent database. This component exe-
cutes a specialized version of the subscription protocol.
On start-up a persistent database broadcasts the name of
each persistent sort on the network. As a result of the sub-
scription protocol that is executed by the collection of her-
alds, any data element of a persistent sort that is written by

an application, will be automatically forwarded to the per-
sistent database. There can be one or more instances of the
persistent database executing on different processing
units, dependent on the required level of system availabil-
ity. Moreover, it is possible to load two or more persistent
databases with disjoint sets of sort names, leading to a dis-
tributed storage of persistent data.

When a processing unit fails, also the applications that
are executed by this unit will be lost. The architecture can
be refined to support both passive and active replication of
applications across different processing units in the net-
work.

Using passive replication, only one process is actually
executing, while one or more back-ups are kept off-line,
either in main memory or on secondary storage. When the
processing unit executing the active process fails, one of
the back-ups is activated. In order to be able to restore the
internal state of the failed process, it is required that each
passively replicated application writes a copy of its state to
the shared dataspace each time the state is updated. The
internal state can be represented by one or more persistent
sorts. When a back-up is activated, it will first restore the
current state from the shared dataspace and then continue
execution.

When timing is critical, active replication of processes
is often a more viable solution. In that case, multiple
instances of the same application are executing in parallel,
hosted by different processing units; all instances read and
write data. Typically active replication is used when tim-
ing is critical and the failing component must be replaced
instantaneously.

The subscription-based protocol can be refined to sup-
port active replication transparently. If a particular
instance of a replicated application performs a write oper-
ation, its herald attaches a unique replication index as a

Figure 4. Supporting fault-tolerance.

communication network

persistent

herald herald herald

active

SHARED DATA SPACE

P0 Pn•••

replication
passive

replication

database(s)

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 6 RTO-MP-IST-064

key field to the data element. The index allows the sub-
scribed heralds to distinguish between the various copies
that they receive from a replicated application. Upon a
read request, a herald first attempts to return a matching
element having a fixed default index. When, after some
appropriate time-out has expired, the requested element is
still not available, a matching element with an index other
than the default is returned. From that moment on it is
assumed that the application corresponding to the default
index has failed, and the subscription registration is
updated accordingly. The index of the actually returned
data element now becomes the new default.

A general overview of the distributed software architec-
ture supporting fault-tolerance based on the various data
and process replication techniques is given in Figure 4.

3.4. System Modifications and Extensions

In the embedded systems domain requirements on
availability often make it necessary to support modifica-
tions and extensions while the current system remains on-
line. There are two distinct cases to be considered.

• The upgrade is an extension to the system, introducing
new applications and sorts but without further
modifications to the existing system.

• The upgrade includes modification of existing
applications.

Since the subscription registration is maintained
dynamically by the heralds, it is obvious that the current
protocol can deal with the first case without further refine-
ments. After installing and starting a new application, it
will automatically integrate.

The second case, clearly, is more difficult. One special,
but important, category of modifications can be handled
by a simple refinement of the heralds. Consider the prob-
lem of upgrading a system by replacing an existing appli-
cation process with one that implements the same
function, but using a better algorithm, leading to higher
quality results. In many systems it is not possible to physi-
cally replace the current application with the new one,
since this would require the system to be taken off-line.

By a refinement of the heralds it is possible to support
on-line replacement of applications. If an application per-
forms a write operation, its herald attaches an additional
key field to the data element representing the application’s
version number. Upon a read request, a herald now first
checks whether multiple versions of the requested instance
are available in the local database. If this is the case, the
instance having the highest version number is delivered to
the application - assuming that higher numbers correspond

to later releases. From that moment on, all data elements
with lower version numbers, received from the same her-
ald, are discarded. In this way an application can be
dynamically upgraded, simply by starting the new version
of the application, after which it will automatically inte-
grate and replace the current version.

4. Conclusion

Due to the inherent complexity of the environment in
which large-scale embedded systems operate, combined
with the stringent requirements regarding temporal behav-
iour, availability, robustness, and maintainability, the
design of these systems is an intricate task. Coordination
models offer the potential of separating functional require-
ments from other aspects of system design. We have pre-
sented a software architecture for large-scale embedded
systems that incorporates a separate coordination model.
We have demonstrated how, starting from a relatively sim-
ple model based on a shared data space, the model can be
successively refined to meet the requirements that are typi-
cal for this class of systems.

Over the past years SPLICE has been applied in the
development of commercially available command-and-
control, and traffic management systems. These systems
consist of some 1000 applications running on close to 100
processors interconnected by a hybrid communication net-
work. Experience with the development of these systems
confirms that the software architecture, including all of the
refinements discussed, significantly reduces the complex-
ity of the design process [3]. Due to the high level of
decoupling between processes, these systems are rela-
tively easy to develop and integrate in an incremental way.
Moreover, distribution of processes and data, fault-tolerant
behaviour, graceful degradation, and dynamic reconfigura-
tion are directly supported by the architecture.

References

[1] J.-P. Banatre, D. Le Metayer, “Programming by Multiset
transformation”, Communications of the ACM, Vol. 36, No.
1, 1993, pp. 98-111.

[2] M. Boasson, “Control Systems Software”, IEEE Transac-
tions on Automatic Control, Vol. 38, No. 7, 1993, pp. 1094-
1107.

[3] M. Boasson, “Complexity may be our own fault”, IEEE
Software, March 1993.

[4] M. Boasson, Software Architecture special issue (guest
editor), IEEE Software, November 1995.

[5] N. Carriero, D. Gelernter, “Linda in Context”, Communica-
tions of the ACM, Vol. 32, No. 4, 1989, pp. 444-458.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

RTO-MP-IST-064 2.1 - 7

[6] D. Garlan, D. Le Metayer (Eds.), “Coordination Languages
and Models”, Lecture Notes in Computer Science 1282,
Springer, 1997.

[7] D. Gelernter, N. Carriero, “Coordination Languages and
their Significance”, Communications of the ACM, Vol. 35,
No. 2, 1992, pp. 97-107.

[8] K. Jackson, M. Boasson, “The importance of good architec-
tural style”, Proc. of the workshop of the IEEE TF on
Engineering of Computer Based Systems, Tucson, 1995.

[9] G.-C. Roman, H.C. Cunningham, “Mixed Programming
Metaphors in a Shared Dataspace Model of Concurrency”,
IEEE Transactions of Software Engineering, Vol. 16, No.
12, 1990, pp.1361-1373.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 8 RTO-MP-IST-064

	2.1 – Architectural Support for Integration in Distributed Reactive Systems
	Abstract
	1. Introduction
	2. Software architecture
	2.1. The shared data space
	2.2. Applications

	3. Refinements of the architecture
	3.1. A distributed software architecture
	3.2. Temporal aspects
	3.3. Fault-tolerance
	3.4. System Modifications and Extensions

	4. Conclusion
	References

